Preview

Medical Visualization

Advanced search

Detection of extracellular myocardial matrix with Dual Energy computed tomography: systematic review and meta-analysis

https://doi.org/10.24835/1607-0763-1089

Abstract

Background. The amount of extracellular myocardial matrix is a non-invasive tool for quantitative assessment of myocardial fibrosis. MRI with late gadolinium-enhancement is considered to be the “Gold standard” of non-invasive practice.  Dual Energy computed tomography is a new non-invasive approach for detection of myocardial fibrosis and its prognostic value remains unclear. The purpose of this study was to summarize all available data and to study prognostic value of DECT for the detection of fibrotic changes in myocardium.

Methods. We searched MEDLINE, EMBASE, Cochrane, SCOPUS and Web of Science for cohort studies up to October 2021 that reported myocardial extracellular volume fraction quantification using contrast enhanced dual energy CT or/and MRI with delayed enhancement.

Results. Eleven studies met eligibility criteria. A systematic analysis demonstrated the difference in extracellular volume fraction in patients with fibrotic and inflammation changes of the myocardium, as well as good comparability between DECT and MRI. The value of extracellular volume fraction in myocardium with fibrotic or inflammatory changes was higher than in healthy tissue, which makes it possible to use the ECV as a non-invasive marker of myocardial fibrosis.

About the Authors

M. V. Lisitskaya
Medical Research and Education Center of Lomonosov Moscow State University
Russian Federation

Maria V. Lisitskaya – Cand. of Sci. (Med.), Radiologist at Radiology department with CT and MR

27-10, Lomonosovsky prospekt, 119192

Scopus ID 57210604921



O. Y. Vershinina
Medical Research and Education Center of Lomonosov Moscow State University

Olga Y. Vershinina – Radiologist at Radiology department with CT and MRI

27-10, Lomonosovsky prospekt, 119192

 



E. A. Mershina
Medical Research and Education Center of Lomonosov Moscow State University
Russian Federation

Elena A. Mershina – Cand. of Sci. (Med.), Assistant Professor of Radiology department; Head of Radiology department 

27-10, Lomonosovsky prospekt, 119192

Scopus ID 12787891900



M. L. Plotnikova
Medical Research and Education Center of Lomonosov Moscow State University
Russian Federation

Maria L. Plotnikova – Radiologist at Radiology department with CT and MRI

27-10, Lomonosovsky prospekt, 119192



D. A. Bazhenova
Medical Research and Education Center of Lomonosov Moscow State University
Russian Federation

Darya A. Bazhenova – Radiologist at Radiology department with CT and MRI

27-10, Lomonosovsky prospekt, 119192



O. S. Shlyapkina
Medical Research and Education Center of Lomonosov Moscow State University
Russian Federation

Olga S. Shlyapkina – Radiologist at Radiology department with CT and MRI

27-10, Lomonosovsky prospekt, 119192



V. E. Sinitsin
Medical Research and Education Center of Lomonosov Moscow State University

Valentin E. Sinitsin – Doct. of Sci. (Med.), Professor, Head of Radiology department; Chief of Radiology and Radiotherapy Chair, Faculty of Fundamental Medicine 

27-10, Lomonosovsky prospekt, 119192



References

1. Lockhart M., Wirrig E., Phelps A., Wessels A. Extracellular matrix and heart development. Birth. Defects Res. Part A – Clin. Mol. Teratol. 2011; 91 (6): 535–550. http://doi.org/10.1002/bdra.20810

2. Ilov N.N., Arnaudova K.S., Nechepurenko A.A., Yasen yavskaya A.L., Bashkina O.A., Samotrueva M.A. Role of the cardiac extracellular matrix in the onset and progression of heart failure. Russian Journal of Cardiology. 2021; 26 (S2): 4362. https://doi.org/10.15829/1560-4071-2021-4362 (In Russian)

3. De Jong S., Van Veen T.A.B, De Bakker J.M.T. et al. Biomarkers of myocardial fibrosis. J. Cardiovasc. Pharmacol. 2011; 57 (5). 522–535. http://doi.org/10.1097/FJC.0b013e31821823d9

4. Wong C.X., Brown A., Lau D.H. et al. Epidemiology of Sudden Cardiac Death: Global and Regional Perspectives. Hear Lung Circ. 2019; 28 (1). 6–14. http://doi.org/10.1016/j.hlc.2018.08.026

5. González A., Schelbert E.B., Díez J., Butler J. Myocardial Interstitial Fibrosis in Heart Failure: Biological and Translational Perspectives. J. Am. Coll. Cardiol. 2018; 71 (15): 1696–1706. http://doi.org/10.1016/j.jacc.2018.02.021

6. Schelbert E.B., Testa S.M., Meier C.G. et al. Myocardial extravascular extracellular volume fraction measurement by gadolinium cardiovascular magnetic resonance in humans: Slow infusion versus bolus. J. Cardiovasc. Magn. Reson. 2011; 13 (1): 16. http://doi.org/10.1186/1532-429X-13-16

7. Dubourg B., Dacher J.N., Durand E. et al. Single-source dual energy CT to assess myocardial extracellular volume fraction in aortic stenosis before transcatheter aortic valve implantation (TAVI). Diagn. Interv. Imaging. 2021; 102 (9): 561–570. http://doi.org/10.1016/j.diii.2021.03.003

8. Disertori M., Rigoni M., Pace N. et al. Myocardial Fibrosis Assessment by LGE Is a Powerful Predictor of Ventricular Tachyarrhythmias in Ischemic and Nonischemic LV Dysfunction: A Meta-Analysis. JACC Cardiovasc. Imaging. 2016; 9 (9): 1046–1055. http://doi.org/10.1016/j.jcmg.2016.01.033

9. Su M.Y.M., Lin L.Y., Tseng Y.H.E. et al. CMR-verified diffuse myocardial fibrosis is associated with diastolic dysfunction in HFpEF. JACC Cardiovasc. Imaging. 2014; 7 (10): 991–997. http://doi.org/10.1016/j.jcmg.2014.04.022

10. Rommel K.P., Von Roeder M., Latuscynski K. et al. Extracellular volume fraction for characterization of patients with heart failure and preserved ejection fraction. J. Am. Coll. Cardiol. 2016; 67 (15). 1815–1825. http://doi.org/10.1016/j.jacc.2016.02.018

11. Patel A.R., Kramer C.M. Role of Cardiac Magnetic Resonance in the Diagnosis and Prognosis of Nonischemic Cardiomyopathy. JACC Cardiovasc. Imaging. 2017; 10 (10 Pt A): 1180–1193. http://doi.org/10.1016/j.jcmg.2017.08.005

12. Moustafa A., Khan M.S., Alsamman M.A. et al. Prognostic significance of T1 mapping parameters in heart failure with preserved ejection fraction: a systematic review. Heart Fail. Rev. 2020; 26 (6):1325–1331. http://doi.org/10.1007/s10741-020-09958-4

13. Bandula S., White S.K., Flett A.S. et al. Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT: Validation against histologic findings. Radiology. 2013; 269 (2): 396–403. http://doi.org/10.1148/radiol.13130130

14. Kurita Y., Kitagawa K., Kurobe Y. et al. Data on correlation between CT-derived and MRI-derived myocardial extracellular volume. Data Brief. 2016; 7: 1045–1047. http://doi.org/10.1016/j.dib.2016.03.073

15. Kurita Y., Kitagawa K., Kurobe Y. et al. Estimation of myocardial extracellular volume fraction with cardiac CT in subjects without clinical coronary artery disease: A feasibility study. J. Cardiovasc. Comput. Tomogr. 2016; 10 (3): 237–241. http://doi.org/10.1016/j.jcct.2016.02.001

16. Takafuji M., Kitagawa K., Nakamura S. et al. Feasibility of extracellular volume fraction calculation using myocardial CT delayed enhancement with low contrast media administration. J. Cardiovasc. Comput. Tomogr. 2020; 14 (6): 524–528. http://doi.org/10.1016/j.jcct.2020.01.013

17. Nacif M.S., Kawel N., Lee J.J. et al. Interstitial myocardial fibrosis assessed as extracellular volume fraction with low-radiation-dose cardiac CT. Radiology. 2012; 264 (3): 876–883. http://doi.org/10.1148/radiol.12112458

18. Nacif M.S., Liu Y., Yao J. et al. 3D left ventricular extracellular volume fraction by low-radiation dose cardiac CT: Assessment of interstitial myocardial fibrosis. J. Cardiovasc. Comput. Tomogr. 2013; 7 (1): 51–57. http://doi.org/10.1016/j.jcct.2012.10.010

19. Gupta A., Kikano E.G., Bera K. et al. Dual energy imaging in cardiothoracic pathologies: A primer for radiologists and clinicians. Eur. J. Radiol. Open. 2021; 20; 8: 100324. http://doi.org/10.1016/j.ejro.2021.100324

20. Yamada A., Kitagawa K., Nakamura S. et al. Quantification of extracellular volume fraction by cardiac computed tomography for noninvasive assessment of myocardial fibrosis in hemodialysis patients. Sci. Rep. 2020; 10 (1): 15367. http://doi.org/10.1038/s41598-020-72417-5

21. Qi R.X., Shao J., Jiang J.S. et al. Myocardial extracellular volume fraction quantitation using cardiac dual-energy CT with late iodine enhancement in patients with heart failure without coronary artery disease: A single-center prospective study. Eur. J. Radiol. 2021; 140: 109743. http://doi.org/10.1016/j.ejrad.2021.109743

22. Ohta Y., Kitao S., Yunaga H. et al. Quantitative evaluation of non-ischemic dilated cardiomyopathy by late iodine enhancement using rapid kV switching dual-energy computed tomography: A feasibility study. J. Cardiovasc. Comput. Tomogr. 2019; 13 (2): 148–156. http://doi.org/10.1016/j.jcct.2018.10.028

23. Abadia A.F., van Assen M., Martin S.S. et al. Myocardial extracellular volume fraction to differentiate healthy from cardiomyopathic myocardium using dual-source dualenergy CT. J. Cardiovasc. Comput. Tomogr. 2020; 14 (2): 162–167. http://doi.org/10.1016/j.jcct.2019.09.008

24. Si-Mohamed S.A., Restier L.M., Branchu A. et al. Diagnostic Performance of Extracellular Volume Quantified by Dual-Layer Dual-Energy CT for Detection of Acute Myocarditis. J. Clin. Med. 2021; 10 (15): 3286. http://doi.org/10.3390/jcm10153286

25. Lee H.J., Im D.J., Youn J.C. et al. Myocardial extracellular volume fraction with dual-energy equilibrium contrastenhanced cardiac ct in nonischemic cardiomyopathy: A prospective comparison with cardiac MR imaging. Radiology. 2016; 280 (1). 49–57. http://doi.org/10.1148/radiol.2016151289

26. Danad I., Fayad Z.A., Willemink M.J., Min J.K. New applications of cardiac computed tomography: Dualenergy, spectral, and molecular CT imaging. JACC Cardiovasc. Imaging. 2015; 8 (6): 710–723. http://doi.org/10.1016/j.jcmg.2015.03.005

27. Wang R., Liu X., Schoepf U.J. et al. Extracellular volume quantitation using dual-energy CT in patients with heart failure: Comparison with 3T cardiac MR. Int. J. Cardiol. 2018; 268: 236–240. http://doi.org/10.1016/j.ijcard.2018.05.027

28. Ohta Y., Kishimoto J., Kitao S. et al. Investigation of myocardial extracellular volume fraction in heart failure patients using iodine map with rapid-kV switching dualenergy CT: Segmental comparison with MRI T1 mapping. J. Cardiovasc. Comput. Tomogr. 2020; 14 (4): 349–355. http://doi.org/10.1016/j.jcct.2019.12.032

29. Oda S., Emoto T., Nakaura T. et al. Myocardial late iodine enhancement and extracellular volume quantification with dual-layer spectral detector dual-energy cardiac CT. Radiol. Cardiothorac. Imaging. 2019; 1 (1): e180003. http://doi.org/10.1148/ryct.2019180003


Supplementary files

Review

For citations:


Lisitskaya M.V., Vershinina O.Y., Mershina E.A., Plotnikova M.L., Bazhenova D.A., Shlyapkina O.S., Sinitsin V.E. Detection of extracellular myocardial matrix with Dual Energy computed tomography: systematic review and meta-analysis. Medical Visualization. 2022;26(3):77-86. (In Russ.) https://doi.org/10.24835/1607-0763-1089

Views: 966


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)