Preview

Medical Visualization

Advanced search

Magnetic resonance tractogtaphy: possibilities and limitations, modern approach to data processing

https://doi.org/10.24835/1607-0763-1064

Abstract

Purpose: systematization of the knowledge about diffusion tensor magnetic resonance tomography; analysis of literature related to current limitations of this method and possibilities of overcoming these limitations.

Materials and methods. We have analyzed 74 publications (6 Проанализировано 74 публикации (6 Russian, 68 foreign), published in the time period from 1986 to 2021years.  More, than half of these articles were published in the last ten years, 19 studies-in the time period from 2016 to 2021years.

Results. In this article we  represent the physical basis of diffusion weighted techniques of magnetic resonance tomography, principles of obtaining diffusion weighted images and diffusion tensor, cover the specific features of the probabilistic and deterministic approaches of the diffusion tensor MRI data processing, describe methods of evaluation of the diffusion characteristics of tissues in clinical practice. Article provides a thorough introduction to the reasons of existing limitations of diffusion tensor MRI and systematization the main developed approaches of overcoming these limitations, such as multi-tensor model, high angular resolution diffusion imaging, diffusion kurtosis visualization. The article consistently reviews the stages of data processing of diffusion tensor magnetic resonance tomography (preprocessing, processing and post processing). We also describe the special aspects of the main approaches to the quantitative data analysis of diffusion tensor magnetic resonance tomography (such as analysis of the region of interest, analysis of the total data amount, quantitative tractography).

Conclusion. Magnetic resonance tractography is a unique technique for noninvasive in vivo visualization of brain white matter tracts and assessment of the structural integrity of their constituent axons. In the meantime this technique, which has found applications in numerous pathologies of central nervous system, has a number of significant limitations, and the main of them are the inability to adequately visualize the crossing fibers and the relatively low reproducibility of the results. Standardization of the data postprocessing algorithms, further upgrading of the magnetic resonance scanners and implementation of the alternative tractography methods have the potential of partially reducing of the current limitations.

About the Authors

A. K. Nikogosova
Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies” of the Federal Medical Biological Agency (FCBRN FMBA), Scientific and research center of radiology and clinical physiology
Russian Federation

Anait K. Nikogosova – researcher, radiologist

1-10, Ostrivityanova str., Moscow 117513

+7-926-538-16-80



T. M. Rostovtseva
Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies” of the Federal Medical Biological Agency (FCBRN FMBA), Scientific and research center of radiology and clinical physiology
Russian Federation

Tatiana M. Rostovtseva – researcher, radiologist

1-10, Ostrivityanova str., Moscow 117513



M. M. Beregov
Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies” of the Federal Medical Biological Agency (FCBRN FMBA), Scientific and research center of radiology and clinical physiology
Russian Federation

Mikhail M. Beregov – radiologist 

1-10, Ostrivityanova str., Moscow 117513



I. L. Gubskiy
Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies” of the Federal Medical Biological Agency (FCBRN FMBA), Scientific and research center of radiology and clinical physiology
Russian Federation

Ilya L. Gubskiy – Senior researcher, Chief of the department of X-ray radiography, computed and magnetic resonance tomography 

1-10, Ostrivityanova str., Moscow 117513



V. G. Lelyuk
Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies” of the Federal Medical Biological Agency (FCBRN FMBA), Scientific and research center of radiology and clinical physiology
Russian Federation

Vladimir G. Lelyuk – Doct. of Sci. (Med.), Professor, Head of Scientific and research center of radiology and clinical physiology, Federal center for brain and neurotechnologies 

1-10, Ostrivityanova str., Moscow 117513



References

1. Alexander A.L., Lee J.E., Lazar M., Field A.S. Diffusion tensor imaging of the brain. Neurotherapeutics: J. Am. Soc. Exp. NeuroTherapeutics. 2007; 4 (3): 316–329. https://doi.org/10.1016/j.nurt.2007.05.011

2. Costabile J.D., Alaswad E., D’Souza S. et al. Current applications of diffusion tensor imaging and tractography in intracranial tumor resection. Front. Oncol. 2019; 9: 426. https://doi.org/10.3389/fonc.2019.00426

3. Alruwaili A.R., Pannek K., Henderson R.D. et al. Tract integrity in amyotrophic lateral sclerosis: 6-month evaluation using MR diffusion tensor imaging. BMC Med. Imaging. 2019; 19 (1): 19. https://doi.org/10.1186/s12880-019-0319-3

4. Andersen O., Hildeman A., Longfils M. et al. Diffusion tensor imaging in multiple sclerosis at different final outcomes. Acta Neurologica Scandinavica. 2018; 137(2): 165–173. https://doi.org/10.1111/ane.12797

5. Moura L.M., Luccas R., de Paiva J.P.Q. et al. Diffusion tensor imaging biomarkers to predict motor outcomes in stroke: a narrative review. Front. Neurol. 2019; 10: 445. https://doi.org/10.3389/fneur.2019.00445

6. Puig J., Blasco G., Schlaug G. et al. Diffusion tensor imaging as a prognostic biomarker for motor recovery and rehabilitation after stroke. Neuroradiology. 2017; 59 (4): 343–351. https://doi.org/10.1007/s00234-017-1816-0

7. Turkin A.M., Pogosbekyan E.L., Tonoyan A.C., Shults E.I., Maximov I.I., Dolgushin M.B., Khachanova N.V., Fadeeva L.M., Melnikova-Pitskhelauri T.V., Pitskhelauri D.I., Pronin I.N., Kornienko V.N. Diffusion Kurtosis Imaging in the Assessment of Peritumoral Brain Edema in Glioblastomas and Brain Metastases. Medical Visualization. 2017; 4: 97–112. https://doi.org/10.24835/1607-0763-2017-4-97-112 (In Russian)

8. Kulesh A.A., Drobakha V.E., Shestakov V.V., Lapaeva T.V., Dement'eva O.V. Frontotemporal degeneration: a clinical case and experience of using of diffusion tensor magneticresonance imaging tractography. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova = Korsakov Neurology and Psychiatry Journal. 2015; 115 (11). https://doi.org/10.17116/jnevro2015115111112-116 (In Russian)

9. Kadyrov S.U., Konovalov A.N., Pronin I.N. MR tractography in diagnosis and choice of a neurosurgical approach to basal ganglia tumors. Burdenko's Journal of Neurosurgery = Zhurnal “Voprosy neirokhirurgii” imeni N.N. Burdenko. 2018; 82 (1). https://doi.org/10.17116/neiro201882178-85 (In Russian)

10. Gumin I.S., Gubskiy I.L., Mironov M.B., Rubleva Yu.V., Moizykevich E.R., Burd S.G. et al. Dyke-Davidoff-Masson syndrome: description of clinical case with diagnostics by EEG, MRI, MR-tractography, fMRI. Neuromuscular Diseases. 2021; 11 (1): 47–57. https://doi.org/10.17650/2222-8721-2021-11-1-47-57 (In Russian)

11. Levashkina I.M., Serebryakova S.V., Efimtsev A.Yu. Diffusion-tensor MRI – the most up-to-date method to research microstructual changes in white matter (publications’ review). Vestnik Sankt-Peterburgskogo universiteta. Medicina = Vestnik of Saint Petersburg University. Medicine. 2016; 11 (4): 39–54. https://doi.org/10.21638/11701/spbu11.2016.404 (In Russian)

12. Hess C.P., Mukherjee P. Visualizing white matter pathways in the living human brain: diffusion tensor imaging and beyond. Neuroimaging Clin. N. Am. 2007; 17 (4): 407– 426, vii. https://doi.org/10.1016/j.nic.2007.07.002

13. Maier-Hein K.H., Neher P.F., Houde J.C. et al. The challenge of mapping the human connectome based on diffusion tractography. Nature Communications. 2017; 8 (1): 1349. https://doi.org/10.1038/s41467-017-01285-x

14. Tournier J.D. Diffusion MRI in the brain – theory and concepts. Prog. Nucl. Magn. Reson. Spectrosc. 2019; 112–113: 1–16. https://doi.org/10.1016/j. pnmrs.2019.03.001

15. Le Bihan D., Breton E., Lallemand D. et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986; 161 (2): 401–407. https://doi.org/10.1148/radiology.161.2.3763909

16. Thomsen C., Henriksen O., Ring P. In vivo measurement of water self diffusion in the human brain by magnetic resonance imaging. Acta Radiol. (Stockholm, Sweden: 1987). 1987; 28 (3): 353–361.

17. Chenevert T.L., Brunberg J.A., Pipe J.G. Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology. 1990; 177 (2): 401–405. https://doi.org/10.1148/radiology.177.2.2217776

18. Huisman T.A.G.M. Diffusion-weighted and diffusion tensor imaging of the brain, made easy. Cancer Imaging. 2010; 10 (1A): S163–S171. https://doi.org/10.1102/1470-7330.2010.9023

19. Moritani T., Ekholm S., Westesson P.L.A. Diffusionweighted MR imaging of the brain. Springer Science & Business Media; 2009.

20. Mukherjee P., Berman J.I., Chung S.W. et al. Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. Am. J. Neuroradiol. 2008; 29 (4): 632– 641. https://doi.org/10.3174/ajnr.A1051

21. Pronin I.N., Fadeeva L.M., Zakharova N.E., Dolgushin M.B., Podoprigora A.E., Kornienko V.N. Diffusion-tensor magnetic resonance imaging and tractography. Annaly Klinicheskoy i Eksperimental’noy Nevrologii = Annals of Clinical and Experimental Neurology. 2008; 2 (1): 32–40. (In Russian)

22. Mori S., Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron. 2006; 51 (5): 527–539. https://doi.org/10.1016/j.neuron.2006.08.012

23. Hasan K.M., Walimuni I.S., Abid H., Hahn K.R. A review of diffusion tensor magnetic resonance imaging computational methods and software tools. Comput. Biol. Med. 2011; 41 (12): 1062–1072. https://doi.org/10.1016/j.compbiomed.2010.10.008

24. Fieremans E., Deene Y.D., Delputte S. et al. Simulation and experimental verification of the diffusion in an anisotropic fiber phantom. J. Magn. Reson. 2008; 190 (2): 189–199. https://doi.org/10.1016/j.jmr.2007.10.014

25. Lätt J., Nilsson M., Rydhög A. et al. Effects of restricted diffusion in a biological phantom: a q-space diffusion MRI study of asparagus stems at a 3T clinical scanner. Magma. 2007; 20 (4): 213–222. https://doi.org/10.1007/s10334-007-0085-z

26. Chen H., Liu T., Zhao Y. et al. Optimization of large-scale mouse brain connectome via joint evaluation of DTI and neuron tracing data. NeuroImage. 2015; 115: 202–213. https://doi.org/10.1016/j.neuroimage.2015.04.050

27. Kato H., Kuroda M., Yoshimura K. et al. Composition of MRI phantom equivalent to human tissues. Med. Phys. 2005; 32 (10): 3199–3208. https://doi.org/10.1118/1.2047807

28. Hellerbach A., Schuster V., Jansen A., Sommer J. MRI phantoms – are there alternatives to agar? PLOS ONE. 2013; 8 (8): e70343. https://doi.org/10.1371/journal. pone.0070343

29. Lewis S., Dyvorne H., Cui Y., Taouli B. Diffusion-weighted imaging of the liver: techniques and applications. Magn. Reson. Imaging Clin. N. Am. 2014; 22 (3): 373–395. https://doi.org/10.1016/j.mric.2014.04.009

30. Wilhelm T., Stieltjes B., Schlemmer H.P. Whole-bodyMR-diffusion weighted imaging in oncology. RoFo. 2013; 184 (10): 950–958. https://doi.org/10.1055/s-0033-1335428

31. Sheth R.A., Bittencourt L.K., Guimaraes A.R. Diffusionweighted imaging of the male pelvis. Magn. Reson. Imaging Clin. N. Am. 2014; 22 (2): 145–163, v. https://doi.org/10.1016/j.mric.2014.01.003

32. Huston J.M., Field A.S. Clinical applications of diffusion tensor imaging. Magn. Reson. Imaging Clin. N. Am. 2013; 21 (2): 279–298. https://doi.org/10.1016/j.mric.2012.12.003

33. Lerner A., Mogensen M.A., Kim P.E. et al. Clinical applications of diffusion tensor imaging. Wld Neurosurg. 2014; 82 (1–2): 96–109. https://doi.org/10.1016/j.wneu.2013.07.083

34. Tae W.S., Ham B.J., Pyun S.B. et al. Current clinical applications of diffusion-tensor imaging in neurological disorders. J. Clin. Neurol. (Seoul, Korea). 2018; 14 (2): 129–140. https://doi.org/10.3988/jcn.2018.14.2.129

35. Domínguez-Pinilla N., Martínez de Aragón A., Diéguez Tapias S. et al. Evaluating the apparent diffusion coefficient in MRI studies as a means of determining paediatric brain tumour stages. Neurología (English Edition). 2016; 31 (7): 459–465. https://doi.org/10.1016/j.nrleng.2014.12.013

36. Al-Sharydah A.M., Al-Arfaj H.K., Saleh Al-Muhaish H. et al. Can apparent diffusion coefficient values help distinguish between different types of pediatric brain tumors? Eur. J. Radiol. Open. 2019; 6: 49–55. https://doi.org/10.1016/j.ejro.2018.12.004

37. Surov A., Meyer H.J., Wienke A. Can apparent diffusion coefficient (ADC) distinguish breast cancer from benign breast findings? A meta-analysis based on 13 847 lesions. BMC Cancer. 2019; 19 (1): 955. https://doi.org/10.1186/s12885-019-6201-4

38. Surov A., Meyer H.J., Wienke A. Apparent diffusion coefficient for distinguishing between malignant and benign lesions in the head and neck region: A systematic review and meta-analysis. Front. Oncol. 2020; 9. https://doi.org/10.3389/fonc.2019.01362

39. Koh D.M., Thoeny H.C. Diffusion-Weighted MR Imaging: applications in the body. Springer Science & Business Media, 2010.

40. Jbabdi S., Johansen-Berg H. Tractography: where do we go from here? Brain Connect. 2011; 1 (3): 169–183. https://doi.org/10.1089/brain.2011.0033

41. Mori S., Crain B.J., Chacko V.P., van Zijl P.C. Threedimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 1999; 45 (2): 265–269. https://doi.org/10.1002/1531-8249(199902) 45:2<265::aid-ana21>3.0.co;2-3

42. Friman O., Farnebäck G., Westin C.F. A Bayesian approach for stochastic white matter tractography. IEEE Transact. Med. Imaging. 2006; 25 (8): 965–978. https://doi.org/10.1109/tmi.2006.877093

43. Behrens T.E.J., Berg H.J., Jbabdi S. et al. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage. 2007; 34 (1): 144–155. https://doi.org/10.1016/j.neuroimage.2006.09.018

44. Lazar M. Mapping brain anatomical connectivity using white matter tractography. NMR Biomedicine. 2010; 23 (7): 821–835. https://doi.org/10.1002/nbm.1579

45. Wu D., Xu J., McMahon M.T. et al. In vivo high-resolution diffusion tensor imaging of the mouse brain. NeuroImage. 2013; 83: 18–26. https://doi.org/10.1016/j.neuroimage.2013.06.012

46. Johansen-Berg H., Behrens T.E.J. Diffusion MRI: From quantitative measurement to in vivo neuroanatomy. Academic Press, 2013.

47. Tuch D.S., Reese T.G., Wiegell M.R. et al. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 2002; 48 (4): 577–582. https://doi.org/10.1002/mrm.10268

48. Pasternak O., Assaf Y., Intrator N., Sochen N. Variational multiple-tensor fitting of fiber-ambiguous diffusionweighted magnetic resonance imaging voxels. Magn. Reson. Imaging. 2008; 26 (8): 1133–1144. https://doi.org/10.1016/j.mri.2008.01.006

49. Mori S. Introduction to Diffusion Tensor Imaging. Elsevier, 2007.

50. Descoteaux M. High angular resolution diffusion imaging (HARDI), 2015. https://doi.org/10.1002/047134608X. W8258

51. Tournier J.D., Mori S., Leemans A. Diffusion tensor imaging and beyond. Magn. Reson. Med. 2011; 65 (6): 1532–1556. https://doi.org/10.1002/mrm.22924

52. Wedeen V.J., Hagmann P., Tseng W.Y.I. et al. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 2005; 54 (6): 1377–1386. https://doi.org/10.1002/mrm.20642

53. Wedeen V.J., Wang R.P., Schmahmann J.D. et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. NeuroImage. 2008; 41 (4): 1267–1277. https://doi.org/10.1016/j.neuroimage.2008.03.036

54. Granziera C., Schmahmann J.D., Hadjikhani N. et al. Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo. PLoS ONE. 2009; 4 (4). https://doi.org/10.1371/journal.pone.0005101

55. Steven A.J., Zhuo J., Melhem E.R. Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain. Am. J. Roentgenol. 2014; 202 (1): W26-33. https://doi.org/10.2214/AJR.13.11365

56. Wu E.X., Cheung M.M. MR diffusion kurtosis imaging for neural tissue characterization. NMR in Biomed. 2010; 23 (7): 836–848. https://doi.org/10.1002/nbm.1506

57. Lazar M., Jensen J.H., Xuan L., Helpern J.A. Estimation of the orientation distribution function from diffusional kurtosis imaging. Magn. Reson. Med. 2008; 60 (4): 774– 781. https://doi.org/10.1002/mrm.21725

58. Jensen J.H., Helpern J.A. MRI quantification of nonGaussian water diffusion by kurtosis analysis. NMR Biomed. 2010; 23 (7): 698–710. https://doi.org/10.1002/nbm.1518

59. Karmonik C., York M., Grossman R. et al. An image analysis pipeline for the semi-automated analysis of clinical fMRI images based on freely available software. Comput. Biol. Med. 2010; 40 (3): 279–287. https://doi.org/10.1016/j.compbiomed.2009.12.003

60. Leemans A., Jones D.K. The B-matrix must be rotated when correcting for subject motion in DTI data. Magn. Reson. Med. 2009; 61 (6): 1336–1349. https://doi.org/10.1002/mrm.21890

61. Netsch T., van Muiswinkel A. Quantitative evaluation of image-based distortion correction in diffusion tensor imaging. IEEE Transact. Med. Imaging. 2004; 23 (7): 789–798. https://doi.org/10.1109/TMI.2004.827479

62. Smith S.M. Fast robust automated brain extraction. Human Brain Mapping. 2002; 17 (3): 143–155. https://doi.org/10.1002/hbm.10062

63. Jiang H., van Zijl P.C.M., Kim J. et al. DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput. Methods Progr. Biomed. 2006; 81 (2): 106–116. https://doi.org/10.1016/j.cmpb.2005.08.004

64. Yeh F.C., Vettel J.M., Singh A. et al. Quantifying differences and similarities in whole-brain white matter architecture using local connectome fingerprints. PLOS Computational Biol. 2016; 12 (11): e1005203. https://doi.org/10.1371/journal.pcbi.1005203

65. Maffei C., Sarubbo S., Jovicich J. Diffusion-based tractography atlas of the human acoustic radiation. Sci. Rep. 2019; 9 (1): 1–13. https://doi.org/10.1038/s41598-019-40666-8

66. Domin M., Langner S., Hosten N., Lotze M. Comparison of parameter threshold combinations for diffusion tensor tractography in chronic stroke patients and healthy subjects. PLoS ONE. 2014; 9 (5). https://doi.org/10.1371/journal.pone.0098211

67. Chanraud S., Zahr N., Sullivan E.V., Pfefferbaum A. MR diffusion tensor imaging: a window into white matter integrity of the working brain. Neuropsychol. Rev. 2010; 20 (2): 209–225. https://doi.org/10.1007/s11065-010-9129-7

68. Ashburner J., Friston K.J. Voxel-based morphometry – the methods. NeuroImage. 2000; 11 (6 Pt 1): 805–821. https://doi.org/10.1006/nimg.2000.0582

69. Snook L., Plewes C., Beaulieu C. Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment. NeuroImage. 2007; 34 (1): 243–252. https://doi.org/10.1016/j.neuroimage.2006.07.021

70. Arrigoni F., Peruzzo D., Gagliardi C. et al. Whole-brain DTI assessment of white matter damage in children with bilateral cerebral palsy: evidence of involvement beyond the primary target of the anoxic insult. Am. J. Neuroradiol. 2016; 37 (7): 1347–1353. https://doi.org/10.3174/ajnr.A4717

71. Smith S.M., Jenkinson M., Johansen-Berg H. et al. Tractbased spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage. 2006; 31 (4): 1487–1505. https://doi.org/10.1016/j.neuroimage.2006.02.024

72. Douaud G., Smith S., Jenkinson M. et al. Anatomically related grey and white matter abnormalities in adolescentonset schizophrenia. Brain: J. Neurol. 2007; 130 (Pt 9): 2375–2386. https://doi.org/10.1093/brain/awm184

73. Kanaan R.A., Shergill S.S., Barker G.J. et al. Tractspecific anisotropy measurements in diffusion tensor imaging. Psychiatr. Res. 2006; 146 (1): 73–82. https://doi.org/10.1016/j.pscychresns.2005.11.002

74. Besseling R.M.H., Jansen J.F.A., Overvliet G.M. et al. Tract specific reproducibility of tractography based morphology and diffusion metrics. PLOS ONE. 2012; 7 (4): e34125. https://doi.org/10.1371/journal.pone.0034125


Supplementary files

Review

For citations:


Nikogosova A.K., Rostovtseva T.M., Beregov M.M., Gubskiy I.L., Lelyuk V.G. Magnetic resonance tractogtaphy: possibilities and limitations, modern approach to data processing. Medical Visualization. 2022;26(3):132-148. (In Russ.) https://doi.org/10.24835/1607-0763-1064

Views: 1329


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)