Preview

Medical Visualization

Advanced search

Quantitative Computed Tomography, modern data. Review

https://doi.org/10.24835/1607-0763-1049

Abstract

In the review we discussed about the method of quantitative computed tomography (QCT, quantitative computed tomography). In QCT, X-ray density (HU) is converted to bone mineral density (BMD mg / ml) using linear relationships obtained by scanning calibration standards (phantoms). When compared with the normative age data, it is possible to diagnose osteoporosis (OP). The review presents various QCT techniques and their diagnostic capabilities in accordance with the positions of ISCD 2019 - (International Society for Clinical Densitometry). The results of comparison of QCT and conventional dual-energy X-ray absorptiometry (DXA) are  considered.  It is noted that in the study of the proximal femur (PF), the results of the methods are well comparable, according to the results of both methods, it is possible to diagnose OP by the T-score. However, when examining the spine QCT, the volume BMD of the trabecular bone of the vertebral bodies is assessed, and with DXA, the projection BMD is assessed. The approaches to the interpretation of the results are also different - diagnosis of OP in DXA of the spine based on the T-score, but in QCT, the ACR (American College of Radiology) criteria are used.

We describe the phantoms used in QCT, as well as provide data on radiation exposure during QCT and DXA.

The article describes an approach to opportunistic screening of osteoporosis by the QCT based on the results of previously performed CT scans, including its automated work-flow using artificial intelligence technologies. These promising techniques are attractive due to the large number of CT examinations performed and the exclusion of additional examinations.

About the Authors

A. V. Petraikin
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of Moscow Health Care Department
Russian Federation

Alexey V. Petraikin – Cand. of Sci (Med.), leading researcher, of Innovative Technologies Department Research and Practical Clinical Center of Diagnostics and Telemedicine Technologies, Department of Health Care of Moscow.

28-1, Srednyaya Kalitnikovskaya str., Moscow, 109029.

SPIN-6193-1656


Competing Interests:

No



I. A. Skripnikova
National Medical Research Center for Therapy and Preventive Medicine, Ministry of Health Care of Russia
Russian Federation

Irina A. Skripnikova – Doct. of Sci. (Med.), Professor, Head of Osteoporosis prevention Department of National Medical Research Center for Therapy and Preventive Medicine, Ministry of Health Care of Russia.

10-3, Petroverigsky per., Moscow, 101990.

SPIN-1514-0880


Competing Interests:

No



References

1. Beckmann E.C. CT scanning the early days. Br. J. Radiol. 2006; 79 (937): 5–8. https://doi.org/10.1259/bjr/29444122

2. Whitehouse R.W., Adams J.E. Single energy quantitative computed tomography: the effects of phantom calibration material and kVp on QCT bone densitometry. Br. J. Radiol. 1992; 65 (778): 931–934. https://doi.org/10.1259/0007-1285-65-778-931

3. Mccready R., Gnanasegaran G., Bomanji J.B. A History of Radionuclide Studies in the UK. Cham, 2016. 152 p. https://doi.org/10.1007/978-3-319-28624-2

4. Genant H.K., Engelke K., Prevrhal S. Advanced CT bone imaging in osteoporosis. Rheumatology. 2008; 47 (Suppl. 4): iv9. https://doi.org/10.1093/rheumatology/ken180

5. Cohen A., Dempster D.W., Müller R., Guo X.E., Nickolas T.L., Liu X.S., Zhang X.H., Wirth A.J., van Lenthe G.H., Kohler T., McMahon D.J., Zhou H., Rubin M.R., Bilezikian J.P., Lappe J.M., Recker R.R., Shane E. Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: Comparison with transiliac bone biopsy. Osteoporos Int. 2010; 21 (2): 263–273. https://doi.org/10.1007/s00198-009-0945-7

6. Fournier R., Harrison R.E. Strategies for studying bone loss in microgravity. Reach. 2020: 17–20: 100036. https://doi.org/10.1016/j.reach.2020.100036

7. Dadwal U.C., Maupin K.A., Zamarioli A., Tucker A., Harris J.S., Fischer J.P., Rytlewski J.D., Scofield D.C., Wininger A.E., Bhatti F.U.R., Alvarez M., Childress P.J., Chakraborty N., Gautam A., Hammamieh R., Kacena M.A. The effects of spaceflight and fracture healing on distant skeletal sites. Sci. Rep. 2019; 9 (1): 11419 (2019). https://doi.org/10.1038/s41598-019-47695-3

8. Bousson V., Le Bras A., Roqueplan F., Kang Y., Mitton D., Kolta S., Bergot C., Skalli W., Vicaut E., Kalender W., Engelke K., Laredo J.D. Volumetric quantitative computed tomography of the proximal femur: Relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int. 2006; 17 (6): 855–864. https://doi.org/10.1007/s00198-006-0074-5

9. Guglielmi G., Lang T.F., Cammisa M., Genant H.K. Quantitative Computed Tomography of the Axial Skeleton. Bone Densitometry and Osteoporosis. Berlin, Heidelberg: Springer. 336–347. https://doi.org/10.1007/978-3-642-80440-3_16

10. Cann C.E., Genant H.K. Precise measurement of vertebral mineral content using computed tomography. J. Comput. Assist. Tomogr. 1980; 4 (4): 493–500. https://doi.org/10.1097/00004728-198008000-00018

11. Faulkner K.G., Glüer C.C., Grampp S., Genant H.K. Cross-calibration of liquid and solid QCT calibration standards: Corrections to the UCSF normative data. Osteoporos Int. 1993; 3 (1): 36–42. https://doi.org/10.1007/BF01623175

12. Engelke K. Quantitative Computed Tomography – Current Status and New Developments. J. Clin. Densitom. 2017; 20 (3): 309–321. https://doi.org/10.1016/j.jocd.2017.06.017

13. 2019 ISCD Official Positions – Adult – International Society for Clinical Densitometry Available at: https://iscd.app. box.com/s/5r713cfzvf4gr28q7zdccg2i7169fv86. Accessed July 14, 2021.

14. The American College of Radiology. ACR–SPR–SSR Practice Parameter for the Performance of Musculoskeletal Quantitative Computed Tomography (Qct). Published 2018. https://www.acr.org/-/media/ACR/Files/Practice-Parameters/QCT.pdf Accessed July 14, 2021

15. Emohare O., Cagan A., Polly D.W., Gertner E. Opportunistic computed tomography screening shows a high incidence of osteoporosis in ankylosing spondylitis patients with acute vertebral fractures. J. Clin. Densitom. 2015; 18 (1): 17–21. https://doi.org/10.1016/j.jocd.2014.07.006

16. Pickhardt P.J., Lee L.J., del Rio A.M., Lauder T., Bruce R.J., Summers R.M., Pooler B.D., Binkley N. Simultaneous screening for osteoporosis at CT colonography: Bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J. Bone Miner. Res. 2011; 26 (9): 2194–2203. https://doi.org/10.1002/jbmr.428

17. Jang S., Graffy P.M., Ziemlewicz T.J., Lee S.J., Summers R.M., Pickhardt P.J. Opportunistic osteoporosis screening at routine abdominal and Thoracic CT: Normative L1 trabecular attenuation values in more than 20 000 adults. Radiology. 2019; 291 (2): 360–367. https://doi.org/10.1148/radiol.2019181648

18. Alacreu E., Moratal D., Arana E. Opportunistic screening for osteoporosis by routine CT in Southern Europe. Osteoporos Int. 2017; 28 (3): 983–990. https://doi.org/10.1007/s00198-016-3804-3

19. Vlasova I.S., Ternovoy S.K., Sorokin A.D., Gorbatov M.M., Vozhagov V.V. Normal age related changes in vertebral mineral bone density in russian population. Journal of radiology and nuclear medicine. 1998; 6: 28–33. (In Russian)

20. Vlasova I.S., Sorokin A.D., Ternovoy S.K. Age related changes of vertebral trabecular substance mineral bone density and the risk of fractures. Medical Visualization. 1998; 4: 31–25. (In Russian)

21. Engelke K., Lang T., Khosla S., Qin L., Zysset P., Leslie W.D., Shepherd J.A., Schousboe J.T. Clinical use of quantitative computed tomography (QCT) of the hip in the management of osteoporosis in adults: the 2015 ISCD official positions Part I. J. Clin. Densitom. 2015; 18 (3): 338–358. https://doi.org/10.1016/j.jocd.2015.06.012

22. Laaksonen M.M.L., Sievänen H., Tolonen S., et al. Determinants of bone strength and fracture incidence in adult Finns: cardiovascular risk in young finns study (the GENDI pQCT study). Arch. Osteoporos. 2010; 5 (1–2): 119–130. https://doi.org/10.1007/s11657-010-0043-7

23. Scanco Medical – Xtreme CT II (specification) Available at: https://pdf.medicalexpo.com/pdf/scanco-medical/ xtremect-ii/105918-145347.html. Accessed July 14, 2021.

24. Guglielmi G., Grimston S.K., Fischer K.C., Pacifici R. Osteoporosis: Diagnosis with lateral and posteroanterior dual x-ray absorptiometry compared with quantitative CT. Radiology. 1994; 192 (3): 845–850. https://doi.org/10.1148/radiology.192.3.8058958

25. Reinbold W.D., Genant H.K., Reiser U.J., Harris S.T, Ettinger B. Bone mineral content in early-postmenopausal and postmenopausal osteoporotic women: Comparison of measurement methods. Radiology. 1986; 160 (2): 469– 478. https://doi.org/10.1148/radiology.160.2.3726129

26. Petryaykin A.V., Kuznetsov S.Yu., Artyukova Z.R., Akhmad E.S., Nizovtsova L.A., Morozov S.P., Yassin L.R., Fedanov V.A., Nikitinskaya O.A., Toroptsova N.V. Сomparison of asynchronous quantitative computed tomography and dualenergy x-ray absorptiometry with a narrow-angle fan beam to assess the state of bmd in the proximal femur. Osteoporosis and Bone Diseases. 2020; 23 (2): 120–121. (In Russian)

27. Centre for Metabolic Bone Diseases, University of Sheffield. FRAX – Fracture Risk Assessement Tool. Available at: https://www.sheffield.ac.uk/FRAX/tool.aspx Accessed July 14, 2021

28. Yu W., Glüer C.C., Grampp S., Jergas M., Fuerst T., Wu C.Y., Lu Y., Fan B., Genant H.K. Spinal bone mineral assessment in postmenopausal women: A comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporos Int. 1995; 5 (6): 433– 439. https://doi.org/10.1007/BF01626604

29. Löffler M.T., Jacob A., Scharr A., Sollmann N., Burian E., El Husseini M., Sekuboyina A., Tetteh G., Zimmer C., Gempt J., Baum T., Kirschke J.S. Automatic opportunistic osteoporosis screening in routine CT: improved prediction of patients with prevalent vertebral fractures compared to DXA. Eur. Radiol. Published online January 2021: 1–9. https://doi.org/10.1007/s00330-020-07655-2

30. Engelke K., Adams J.E., Armbrecht G., Augat P., Bogado C.E., Bouxsein M.L., Felsenberg D., Ito M., Prevrhal S., Hans D.B., Lewiecki E.M. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: The 2007 ISCD Official Positions. J. Clin. Densitom. 2008; 11 (1): 123–162. https://doi.org/10.1016/j.jocd.2007.12.010

31. Zysset P., Qin L., Lang T., et al. Clinical Use of Quantitative Computed Tomography–Based Finite Element Analysis of the Hip and Spine in the Management of Osteoporosis in Adults: the 2015 ISCD Official Positions – Part II. J. Clin. Densitom. 2015; 18 (3): 359–392. https://doi.org/10.1016/j.jocd.2015.06.011

32. Engelke K., Lang T., Khosla S., Qin L., Zysset P., Leslie W.D., Shepherd J.A., Shousboe J.T. Clinical use of quantitative computed tomography-based advanced techniques in the management of osteoporosis in adults: The 2015 ISCD Official Positions-Part III. J. Clin. Densitom. 2015; 18 (3): 393–407. https://doi.org/10.1016/j.jocd.2015.06.010

33. Kalender W.A., Felsenberg D., Genant H.K., Fischer M., Dequeker J., Reeve J. The European Spine Phantom--a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur. J. Radiol. 1995; 20 (2): 83–92. https://doi.org/10.1016/0720-048x(95)00631-y

34. Petraikin A.V., Nisovtsova L.A., Sergunova K.A., Akhmad E.S., Semenov D.S., Petryaykin F.A., Gombolevsky V.A., Nikolaev A.E., Koshurnikov D.S., Titova Yu.I., Morozov S.P., Vladzymyrskyy A.V. Accuracy of Asynchronous Quantitative Computed Tomography by Phantom Modelling. Radiology – Practice. 2019; 6 (78): 49–59. (In Russian)

35. Bonaretti S., Carpenter R.D., Saeed I. et al. Novel anthropomorphic hip phantom corrects systemic interscanner differences in proximal femoral vBMD. Phys. Med. Biol. 2014; 59 (24): 7819–7834. https://doi.org/10.1088/0031-9155/59/24/7819

36. Lang T.F., Li J., Harris S.T., Genant H.K. Assessment of vertebral bone mineral density using volumetric quantitative CT. J. Comput. Assist. Tomogr. 1999; 23 (1): 130–137. https://doi.org/10.1097/00004728-199901000-00027

37. Wang L., Su Y., Wang Q., Duanmu Y., Yang M., Yi C., Cheng X. Validation of asynchronous quantitative bone densitometry of the spine: Accuracy, short-term reproducibility, and a comparison with conventional quantitative computed tomography. Sci. Rep. 2017; 7 (1): 6284. https://doi.org/10.1038/s41598-017-06608-y

38. Brown J.K., Timm W., Bodeen G., Chason A., Perry M., Vernacchia F., DeJournett R. Asynchronously Calibrated Quantitative Bone Densitometry. J. Clin. Densitom. 2017; 20 (2): 216–225. https://doi.org/10.1016/j.jocd.2015.11.001

39. Pickhardt P.J., Bodeen G., Brett A., Brown J.K., Binkley N. Comparison of femoral neck BMD evaluation obtained using lunar DXA and QCT with asynchronous calibration from CT colonography. J. Clin. Densitom. 2015; 18 (1): 5–12. https://doi.org/10.1016/j.jocd.2014.03.002

40. Gausden E.B., Nwachukwu B.U., Schreiber J.J., Lorich D.G., Lane J.M. Opportunistic use of CT imaging for osteoporosis screening and bone density assessment: A qualitative systematic review. J. Bone Jt. Surg. – Am. Vol. 2017; 99 (18): 1580–1590. https://doi.org/10.2106/JBJS.16.00749

41. Brown J.K., Timm W., Bodeen G., Chason A., Perry M., Vernacchia F., DeJournett R. Asynchronously Calibrated Quantitative Bone Densitometry. J. Clin. Densitom. 2017; 20 (2): 216–225. https://doi.org/10.1016/j.jocd.2015.11.001

42. Ziemlewicz T.J., Maciejewski A., Binkley N., Brett A.D., Brown J.K., Pickhardt P.J. Opportunistic Quantitative CT Bone Mineral Density Measurement at the Proximal Femur Using Routine Contrast-Enhanced Scans: Direct Comparison With DXA in 355 Adults. J. Bone Miner. Res. 2016; 31 (10): 1835–1840. https://doi.org/10.1002/jbmr.2856

43. Summers R.M., Baecher N., Yao J., Liu J., Pickhardt P.J., Choi J.R., Hill S. Feasibility of Simultaneous Computed Tomographic Colonography and Fully Automated Bone Mineral Densitometry in a Single Examination. J. Comput. Assist. Tomogr. 2011; 35 (2): 212–216. https://doi.org/10.1097/RCT.0b013e3182032537

44. Cheng X., Zhao K., Zha X., et al. Opportunistic Screening Using Low-Dose CT and the Prevalence of Osteoporosis in China: A Nationwide, Multicenter Study. J. Bone Miner. Res. Published online November 2020:jbmr.4187. https://doi.org/10.1002/jbmr.4187

45. Boden S.D., Goodenough D.J., Stockham C.D., Jacobs E., Dina T., Allman R.M. Precise measurement of vertebral bone density using computed tomography without the use of an external reference phantom. J. Digit. Imaging. 1989; 2 (1): 31–38. https://doi.org/10.1007/BF03168013

46. Gudmundsdottir H., Jonsdottir B., Kristinsson S., Johannesson A., Goodenough D., Sigurdsson G. Vertebral bone density in icelandic women using quantitative computed tomography without an external reference phantom. Osteoporos Int. 1993; 3 (2): 84–89. https://doi.org/10.1007/BF01623378

47. Kopperdahl D.L., Aspelund T., Hoffmann P.F., Sigurdsson S., Siggeirsdottir K., Harris T.B., Gudnason V., Keaveny T.M. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J. Bone Miner. Res. 2014; 29 (3): 570–580. https://doi.org/10.1002/jbmr.2069

48. Valentinitsch A., Trebeschi S., Kaesmacher J., Lorenz C., Löffler M.T., Zimmer C., Baum T., Kirschke J.S. Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporos Int. 2019; 30 (6): 1275–1285. https://doi.org/10.1007/s00198-019-04910-1

49. Roski F., Hammel J., Mei K., Baum T., Kirschke J.S., Laugerette A., Kopp F.K., Bodden J., Pfeiffer D., Pfeiffer F., Rummeny E.J., Noël P.B., Gersing A.S., Schwaiger B.J. Bone mineral density measurements derived from dual-layer spectral CT enable opportunistic screening for osteoporosis. Eur. Radiol. 2019; 29 (11): 6355–6363. https://doi.org/10.1007/s00330-019-06263-z

50. Petraikin A.V., Belaya Z.E., Kiseleva A.N. et al. Artificial intelligence for diagnosis of vertebral compression fractures using a morphometric analysis model, based on convolutional neural networks. Problems of Endocrinology = Problemi Endocrinologii. 2020; 66 (5): 48–60. https://doi.org/10.14341/probl12605 (In Russian)

51. Graffy P.M., Liu J., Pickhardt P.J., Burns J.E., Yao J., Summers R.M. Deep learning-based muscle segmentation and quantifcation at abdominal CT: Application to a longitudinal adult screening cohort for sarcopenia assessment. Br. J. Radiol. 2019; 92 (1100). https://doi.org/10.1259/bjr.20190327

52. Paris M.T. Body Composition Analysis of Computed Tomography Scans in Clinical Populations: The Role of Deep Learning. Lifestyle Genomics. 2020; 13 (1): 28–31. https://doi.org/10.1159/000503996

53. Pickhardt P.J., Lee S.J., Liu J., Yao J., Lay N., Graffy P.M., Summers R.M. Population-based opportunistic osteoporosis screening: Validation of a fully automated CT tool for assessing longitudinal BMD changes. Br. J. Radiol. 2019; 92 (1094). https://doi.org/10.1259/bjr.20180726

54. Dagan N., Elnekave E., Barda N., Bregman-Amitai O., Bar A., Orlovsky M., Bachmat E., Balicer R.D. Automated opportunistic osteoporotic fracture risk assessment using computed tomography scans to aid in FRAX underutilization. Nat. Med. 2020; 26 (1): 77–82. https://doi.org/10.1038/s41591-019-0720-z

55. Australian Radiation Protection and Nuclear Safety Agency. Flying and health: Cosmic radiation exposure for casual flyers and aircrew. Available at: https://www. arpansa.gov.au/understanding-radiation/radiation-sources/more-radiation-sources/flying-and-health Accessed July 14, 2021.

56. Damilakis J., Adams J.E., Guglielmi G., Link T.M.. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur. Radiol. 2010; 20 (11): 2707–2714. https://doi.org/10.1007/s00330-010-1845-0

57. Jang J., Jung S.E., Jeong W.K., Lim Y.S., Choi J.I., Park M.Y., Kim Y., Lee S.K., Chung J.J., Eo H., Yong H.S., Hwang S.S. Radiation Doses of Various CT Protocols: A Multicenter Longitudinal Observation Study. J. Korean Med. Sci. 2016; 31: 24–31. https://doi.org/10.3346/jkms.2016.31.S1.S24

58. Khoo B.C., Brown K., Cann C., Zhu K., Henzell S., Low V., Gustafsson S., Price R.I., Prince R.L. Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteoporos Int. 2009; 20 (9): 1539–1545. https://doi.org/10.1007/s00198-008-0820-y


Supplementary files

Review

For citations:


Petraikin A.V., Skripnikova I.A. Quantitative Computed Tomography, modern data. Review. Medical Visualization. 2021;25(4):134-146. (In Russ.) https://doi.org/10.24835/1607-0763-1049

Views: 1631


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)